MATHEMATICS METHODS

MAWA Semester 2 (Units 3 and 4) Examination 2016 Calculator-free Marking Key

© MAWA, 2016

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

the end of week 1 of term 4, 2016

Section One: Calculator-free

(54 Marks)

Question 1(a)

Solution	
$ \ln m = \frac{3}{2} \Longrightarrow m = e^{\frac{3}{2}} $	
Marking key/mathematical behaviours	Marks
identifies correct base	1
determines correct power	1

Question 1(b)

$$\log[(m+3)m] = 1$$

$$(m+3)m = 10^1$$

$$m^2 + 3m - 10 = 0$$

$$(m+5)(m-2)=0$$

m = -5 or 2 but since m has to be greater than zero, m = 2 is the only solution.

Marking key/mathematical behaviours	Marks
 applies logarithmic rule for a product correctly 	1
 recognises base 10 	1
creates equation with correct trinomial	1
 solves equation correctly giving the correct value of m 	1

Question 2(a)(i)

\sim		
C. V	lution	١
. 7(1)		
\sim	auoi	

$$\frac{dy}{dx} = \frac{(6x^4 - x^3 + e)(4e^x) - (4e^x)(24x^3 - 3x^2)}{(6x^4 - x^3 + e)^2}$$

Marking key/mathematical behaviours	Marks
differentiates the 1st term on numerator correctly	1
differentiates the 2nd term on numerator correctly	1
squares factor on denominator	1

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-FREE MARKING KEY

Question 2(a)(ii)

Marking key/mathematical behaviours	Marks
applies correctly logarithmic rule for quotients	1
differentiates correctly 1st term	1
differentiates correctly 2nd term	1

Question 2(b)

Solution

Let
$$u = x^2 - \cos(x) \Rightarrow \frac{du}{dx} = 2x + \sin(x)$$
 and $\frac{dy}{du} = \frac{e^u}{2}$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{e^{u}}{2} \times (2x + \sin(x)) = \frac{e^{x^{2} - \cos(x)}}{2} (2x + \sin(x))$$

Marking key/mathematical behaviours	Marks
differentiates correctly to determine1st factor in chain rule	1
differentiates correctly to determine 2nd factor in chain rule	1
• expresses $\frac{dy}{dx}$ in terms of x	1

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-FREE MARKING KEY

Question 3(a)

Solution	
Discrete random variable	
Marking key/mathematical behaviours	Marks
determines correct category	1

Question 3(b)

Solution	
Non-random variable	
Marking key/mathematical behaviours	Marks
determines correct category	1

Question 3(c)

4400110110(0)	
Solution	
Continuous random variable	
Marking key/mathematical behaviours	Marks
determines correct category	1

Question 4

Solution		
$k \int_{0}^{1} x - \frac{x^{3}}{3} dx = 1$		
$k \left[\frac{x^2}{2} - \frac{x^4}{12} \right]_0^1 = 1$		
$k\left[\frac{1}{2} - \frac{1}{12}\right] = 1$	\Rightarrow	$k = \frac{12}{5}$

sets up integral and equates to oneintegrates correctly	1
integrates correctly	_
	1
evaluates integral correctly	1
 calculates the value of k 	1

Question 5

Solution

$$p(1-p) = \left(\frac{\sqrt{3}}{4}\right)^2 = \frac{3}{16}$$

$$p(1-p) = \left(\frac{\sqrt{3}}{4}\right)^2 = \frac{3}{16}$$

$$16p^2 - 16p + 3 = 0$$

$$(4p-1)(4p-3) = 0 \implies p = \frac{1}{4} \text{ or } p = \frac{3}{4}$$

Marking key/mathematical behaviours	Marks
sets up equation using variance of a Bernoulli distribution	1
derives quadratic equation	1
factorises trinomial	1
• solves correctly for p	1

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-FREE MARKING KEY

Question 6(a)

Solution	
Function is valid for $x > -3$	
Marking key/mathematical behaviours	Marks
 correctly states the values of x for which the function is valid 	1

Question 6(b)

Solution	
$\frac{dy}{dx} = \frac{2}{2x+6} = 4 \Rightarrow \frac{2x+6}{2} = \frac{1}{4} \Rightarrow x+3 = \frac{1}{4} \Rightarrow x = -2.75$	
Marking key/mathematical behaviours	Marks
differentiates correctly	1
solves equation correctly	1

Question 7(a)

Solution						
у	0	1	2	3	4	
P(Y = y)	0	k	4 <i>k</i>	9k	16k	
Marking key/ma	thematical bel	naviours			•	Marks
 correctly 	completes tw	o values				1
 correctly 	completes 4	values				1

Question 7(b)

Solution	
k + 4k + 9k + 16k = 1	
$30k = 1 \Rightarrow k = \frac{1}{30}$	
Marking key/mathematical behaviours	Marks
sums probabilities equal to one	1
 correctly solves equation for k 	1

Question 8

Solution

$$f(x) = \int f'(x) dx$$
$$= \int 2xe^{3x^2 - 1} dx$$
$$= \frac{1}{3}e^{3x^2 - 1} + c$$

since f(0) = 0:

$$0 = \frac{1}{3}e^{-1} + c$$

$$c = -\frac{1}{3e}$$

$$c = -\frac{1}{3e}$$

$$f(x) = \frac{1}{3}e^{3x^2 - 1} - \frac{1}{3e}$$

Marking key/mathematical behaviours	
determines indefinite integral	1
ullet substitutes initial conditions to calculate the constant c	1
• states f(x)	1

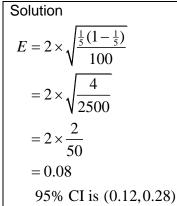
Question 9 (a)(i)

Solution

$$\hat{p} = \frac{20}{100} = \frac{1}{5}$$

Marking key/mathematical behaviours	Marks
determines the proportion	1

Question 9(a)(ii)



Marking key/mathematical behaviours	
 substitutes values for z, n and p 	1
 simplifies square root 	1
 simplifies E 	1
 states interval 	1

Question 9(b)

Solution	
$E = 1 \times \sqrt{\frac{m(1-m)}{n_1}}$	
68% CI is $(m - \sqrt{\frac{m(1-m)}{n_1}}, m + \sqrt{\frac{m(1-m)}{n_1}})$	
Marking key/mathematical behaviours	Marks
determines E	1
states confidence interval.	1

Question 9(c)(i)

Solution

 n_2 is larger than n_1

To increase confidence a larger interval is required for a stable sample size. Increasing n reduces the standard error and thus the interval can remain the same.

Marking key/mathematical behaviours	Marks
states n ₂ is larger with reason	1
states correct reason	1

Question 9(c)(ii)

Solution

$$E_1 = 1 \times \sqrt{\frac{m(1-m)}{n_1}}$$

$$E_2 = 1.5 \times \sqrt{\frac{m(1-m)}{n_2}}$$

Same interval so $E_1 = E_2$

$$\sqrt{\frac{m(1-m)}{n_1}} = 1.5 \times \sqrt{\frac{m(1-m)}{n_2}}$$

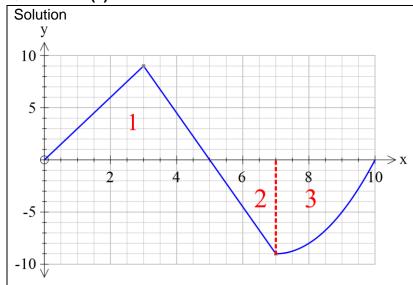
$$\frac{m(1-m)}{n_1} = (1.5)^2 \frac{m(1-m)}{n_2}$$

$$\frac{n_2}{n_1} = 2.25$$

$$n_2 = 2.25n_1$$

Marking key/mathematical behaviours	Marks
equates E ₁ and E ₂	1
squares both sides	1
states relationship	1

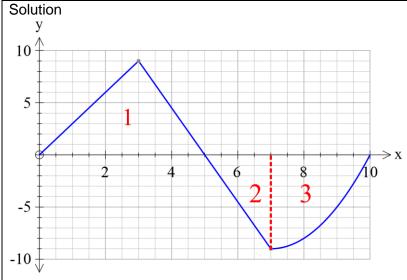
Question 10(a)



$$\int_{0}^{5} f(x)dx = \text{area of triangle (Area 1)}$$
$$= \frac{1}{2} \times 5 \times 9$$
$$= 22 \frac{1}{2}$$

Marking key/mathematical behaviours	Marks
identifies integral as area of correct triangle	1
determines integral.	1

Question 10(b)



Area
$$2 = \frac{1}{2} \times 2 \times 9$$

= 9 square units

Area
$$3 = 50 - 22\frac{1}{2} - 9$$

= $18\frac{1}{2}$ square units

$$= 18\frac{1}{2} \text{ square units}$$

$$\int_{7}^{10} f(x)dx = -\text{ Area } 3$$

$$= -18\frac{1}{2}$$

Marking key/mathematical behaviours	Marks
calculates area 2	1
calculates area 3	1
determines integral	1